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Abstract

The problem of evaluating scientific publications and
their authors is important, and as such has attracted in-
creasing attention. Recent graph-theoretic ranking ap-
proaches have demonstrated remarkable successes, but
most of their applications are limited to homogeneous net-
works such as the network of citations between publica-
tions. This paper proposes a novel method for co-ranking
authors and their publications using several networks: the
social network connecting the authors, the citation net-
work connecting the publications, as well as the authorship
network that ties the previous two together. The new co-
ranking framework is based on coupling two random walks,
that separately rank authors and documents following the
PageRank paradigm. As a result, improved rankings of doc-
uments and their authors depend on each other in a mutu-
ally reinforcing way, thus taking advantage of the additional
information implicit in the heterogeneous network of au-
thors and documents. The proposed ranking approach has
been tested using data collected from CiteSeer, and demon-
strates a great improvement in author ranking quality com-
pared with ranking by the number of publications, the num-
ber of citations and the PageRank calculated in the authors’
social network.

1. Introduction

Quantitative evaluation of researchers’ contributions has
become an increasingly important topic since the late 80’s
due to its practical importance for making decisions con-
cerning matters of appointment, promotion and funding.
As a result, bibliometric indicators such as citation counts
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and different versions of theJournal Impact Factor[8, 14]
are being widely used, although it is a subject of much
controversy [22]. Accordingly, new metrics are constantly
being proposed and questioned, leading to ever-increasing
research efforts on bibliometrics [10, 14]. These simple
counting metrics are attractive, because it is convenient to
have a single number that is easy to interpret. However, it
has become evident in recent research that the evaluation of
the scientific output of individuals can be performed better
by considering the network structures among the entities in
question (e.g. [19, 15]).

Recently, a great amount of research has been concerned
with ranking networked entities, such as social actors or
Web pages, to infer and quantify their relative importance,
given the network structure. Severalcentrality measures
have been proposed for that purpose [5, 13, 21]. For ex-
ample, a journal can be considered influential if it is cited
by many other journals, especially if those journals are in-
fluential, too. Ranking networked documents received a
lot of attention, particularly because of its applicationsto
search engines. (e.g. PageRank [5], HITS [13]). Rank-
ing social network actors, on the other hand, is employed
for exploring scientific collaboration networks [23], under-
standing terrorist networks [16, 23], ranking scientific con-
ferences [19] and mining customer networks for efficient
viral marketing [7]. While centrality measures are find-
ing their way into traditional bibliometrics, let us point out
that the evaluations of the relative importance of networked
documents have been carriedindependently, in the similar
studies, from social network actors, where the natural con-
nection between researchers and their publicationsauthor-
shipand the social network among researchers are not fully
leveraged.

This paper proposes a framework for co-ranking enti-
ties of different kinds in a heterogeneous network connect-



Figure 1. Three networks we use for co-
ranking: a social network connecting au-
thors, the citation network connecting doc-
uments, and the co-authorship network that
ties the two together. Circles represent au-
thors, rectangles represent documents.

ing the researchers (authors) and publications they produce
(documents). The heterogeneous network is comprised of
GA, a social network connecting authors,GD, the citation
network connecting documents, andGAD, the bipartite au-
thorship network that ties the previous two together. Further
details will be given in§ 3. A simple example of a such a
heterogeneous network is shown in Fig. 1.

We propose a co-ranking method in a heterogeneous net-
work by coupling two random walks onGA andGD using
the authorship information inGAD. We assume that there
is a mutually reinforcing relationship between authors and
documents that could be reflected in the rankings. In par-
ticular, the more influential an author is, the more likely his
documents will be well-received. Meanwhile, well-known
documents bring more acknowledgments to their authors
than those that are less cited. While it is possible to come up
with a ranking of authors based solely on a social network
and obtain interesting and meaningful results [15], these
results are inherently limited, because they include no di-
rect consideration neither of the number of publications of
a given author (encoded in the authorship network) nor of
their impact (reflected in the citation network).

The contributions of this paper include: (1) A new
framework for co-ranking entities of two types in a het-
erogeneous network is introduced; (2) The framework is
adapted to ranking authors and documents: a more flexible
definition of the social network connecting authors is used
and random walks that are part of the framework are appro-
priately designed for this particular application; (3) Empir-
ical evaluations have been performed on a part of the Cite-
Seer data set allowing to compare co-ranking with several
existing metrics. Obtained results suggest that co-ranking is
successful in grasping the mutually reinforcing relationship,
therefore making the rankings of authors and documents de-
pend on each other.

We start from reviewing related work in§ 2. We propose
the new framework in§ 3. We demonstrate the convergence
of the ranking scores in§ 4. We explain how we set up the
framework in§ 5. We present experimental results and give

some comments in§ 6 and conclude this work in§ 7.

2. Related Work

The problem of ranking scientists and their work natu-
rally belongs to at least two different fields: sociology [21]
and bibliometrics [20]. An important step in bibliometrics
was a paper by Garfield [8] in the early 70’s, discussing
the methods for ranking journals by Impact Factor. Within
a few years, Gabriel Pinski and Francis Narin proposed
several improvements [17]. Most importantly, they recog-
nized that citations from a more prestigious journal should
be given a higher weight [17]. They introduced a recur-
sively defined weight for each journal. In particular, incom-
ing citations from more authoritative journals, accordingto
the weights computed during the previous iteration, con-
tributed more weight to the journal being cited. Pinski and
Narin stated it as an eigenvalue problem and applied to 103
journals in physics. However, their approach did not attract
enough attention, so that simpler measures have remained
in use.

It was 25 years later when Brin and Page, working on
Google, applied a very similar method named PageRank
to rank Web pages [5]. Independently, Kleinberg proposed
the HITS algorithm [13], also intended for designing search
systems, which is similar to PageRank in its spirit but used
a mutual reinforcement principle. Since then, numerous pa-
pers on link analysis-based ranking have appeared, typically
taking HITS or PageRank as the starting point (e.g. [1, 4]).
There are several good introduction papers to the field (e.g.
[4]). The mutual reinforcement principle has also been ap-
plied to text summarization and other natural language pro-
cessing problems [24].

The Co-Ranking framework presented in this paper is
another method based on PageRank and the mutual rein-
forcement principle, with its new focus on heterogeneous
networks. Variations of PageRank have already been ap-
plied in many contexts. For example, Bollen et al. [3]
ranked journals in their citation network, essentially by
PageRank. They presented an interesting empirical compar-
ison of this ranking with the ISI Impact Factor on journals
in Physics, Computer Science, and Medicine. Their results
clearly support that the Impact Factor measures popularity
while the PageRank measures prestige. Another empirical
study [6] ranked papers in Physics by PageRank. It turns
out that famous but not so highly cited papers are ranked
very high. Yet another study by Liu et al. focused on co-
authorship networks [15]. They compared the rankings of
scientists by PageRank and its natural variation with three
other rankings by degree, betweenness centrality and close-
ness centrality. A recent work also looks into random walks
for learning on the subgraph its relation with the comple-
ment of it [11]. Nevertheless, given all that, we are not
aware of any attempts to correlate the rankings of two dif-



ferent kinds of entities included in a single heterogeneous
network.

3 Co-Ranking Framework

3.1 Notations and preliminaries

Denote the heterogeneous graph of authors and docu-
ments asG = (V, E) = (VA∪VD, EA∪ED∪EAD). There
are three graphs (networks) in question.GA = (VA, EA)
is the unweighted undirected graph (social network) of au-
thors.VA is the set of authors, whileEA is the set of bidi-
rectional edges, representing social ties. The number of au-
thorsnA = |VA| and authors are denoted asai, aj , · · · ∈
VA. GD = (VD, ED) is the unweighted directed graph (ci-
tation network) of documents, whereVD is the document
set,ED is the set of links, representing citations between
documents. The number of documentsnD = |VD|. Indi-
vidual documents are denoted asdi, dj , · · · ∈ VD. GAD =
(VAD, EAD) is the unweighted bipartite graph representing
authorship.VAD = VA ∪ VD. Edges inEAD connect each
document with all of its authors.

The framework includes threerandom walks, one on
GA, one onGD and one onGAD. A random walk on a
graph is a Markov chain, its states being the vertices of the
graph. It can be described by a squaren × n matrix M ,
wheren is the number of vertices in the graph.M pre-
scribes the transition probabilities. That is,0 ≤ p(i, j) =
Mi,j ≤ 1 is the conditional probability that the next state
will be vertexj, given that the current state is vertexi. If
there is no edge from vertexi to vertexj thenMi,j = 0,
with the exception when there are no outgoing edges from
vertexi at all. In that case we assume thatMi,j = 1

n
for

all verticesj. By definition,M is a stochastic matrix, i.e.
its entries are nonnegative and every row adds up to one. A
simple random walkon a graph goes equi-probably to any
of the current vertex’ neighbors.

In this paper, “Markov chain” and “random walk” are
used interchangeably to mean “time-homogeneous finite
state-space Markov chain”. Unless otherwise stated, all
Markov chains in question are ergodic, that is, irreducible
and aperiodic. Aprobability distributionis a vectorv with
one entry for each vertex in the graph underlying a random
walk, such that all its entries are nonnegative and add up to
one,‖v‖1 = 1. After one step of a random walk, described
by a stochastic matrixM , the probability distribution will
beMTv, whereMT is the transpose ofM . A stationary
probability distributionvst = limn→∞(MT )nv contains
the limiting probabilities after a large number of steps of the
random walk. It is a common convention that the PageRank
ranking vectorr satisfies‖r‖1 = 1, naturally, sincer is
a probability distribution. The co-ranking framework will
produce two ranking vectors,a for authors andd for docu-
ments, also satisfying

∀1 ≤ i ≤ nA, 1 ≤ j ≤ nD, ai, dj ≥ 0; (1)

‖a‖1 = 1, ‖d‖1 = 1 (2)

As mentioned above, we will have three random walks.
The random walk onGA (respectively,GD) will be de-
scribed by a stochastic matrix̃A (respectively,̃D). We shall
start from two random walks, described by stochastic matri-
cesA andD, and then slightly alter them in§ 3.2 to actually
obtainÃ andD̃. All of them are calledIntra-class random
walks, because they walk either within the authors’ or the
documents’ network. The third random walk onGAD is
called theInter-class random walk. It will suffice to de-
scribe it by annA×nD matrixAD and annD×nA matrix
DA, sinceGAD is bipartite. The design ofA, D, AD and
DA is postponed until§ 5.

GD

α

α

λ

λ

GA
GAD

Figure 2. The framework for co-ranking au-
thors and documents. GA is the social net-
work of authors. GD is the citation network
of documents. GAD is the authorship net-
work. α is the jump probability for the Intra-
class random walks. λ is a parameter for cou-
pling the random walks, quantifying the im-
portance of GAD versus that of GA and GD.

Before making everything precise, let us briefly sketch
the co-ranking framework. The conceptual scheme is illus-
trated in Fig. 2. Two Intra-class random walks incorporate
thejump probabilityα, which has the similar meaning to the
damping factor as used in PageRank. They are coupled us-
ing the Inter-class random walk on the bipartite authorship
graphGAD. The coupling is regulated byλ. In the extreme
caseλ = 0 there is no coupling; this amounts to separately
ranking authors and documents by PageRank. In general,
λ represents the extent to which we want the rankings of
documents and their authors depend on each other1.

1This is a symmetric setting of parameters. An asymmetric setting of
parameters can introduceαA 6= αD andλAD 6= λDA. We do not expect
that differentα can make any difference. We do expect that differentλ

can make a difference, but we did not investigate that. Note,however, that
in the latter case one would need a different normalization instead of (2),
satisfying‖a‖1λAD = ‖d‖1λDA.



3.2 PageRank: two random walks

First of all, we are going to rank the networks of authors
and documents independently, according to the PageRank
paradigm [5]. Consider a random walk on the author net-
work GA and letA be the transition matrix (A will be de-
fined in § 5). Fix someα and say that at each time step
with probability α we do not make a usual random walk
step, but instead jump to any vertex, chosen uniformly at
random. This is another random walk with the transition
matrix

Ã = (1 − α)A +
α

nA

11T (3)

Here1 is the vector ofnA entries, each being equal to
one. Leta ∈ RnA , ‖a‖1 = 1 be the only solution of the
equation

a = ÃT a (4)

.
Vector a contains the ranking scores for the vertices in

GA. It is a standard fact that the existence and uniqueness
of the solution of (4) follows from the random walk̃A being
ergodic, and this is why we are using̃A instead ofA. (α > 0
guarantees irreducibility, because we can jump to any vertex
in the graph.)

Documents can be ranked in the citation networkGD in
a similar way. In particular,

D̃ = (1− α)D +
α

nD

11T, (5)

For details regarding Markov chains, specifically that the
stationary probabilities of an ergodic Markov chain can be
computed by iterating the powers of the transition matrix,
see any textbook on stochastic processes, such as [18].

3.3 (m, n, k, λ)–coupling of two Intra-class
random walks

To couple these two random walks we construct a com-
bined random walk on the heterogeneous graphG = GA ∪
GD ∪ GAD. A probability distribution will have the form
(a,d), satisfying‖a‖1 + ‖d‖1 = 1. We will use the sta-
tionary probabilities of the vertices inVA to rank authors
and the stationary probabilities of the vertices inVD to rank
documents. In fact, we will multiply all of them by2 to
ensure that‖a‖1 = ‖d‖1 = 1. Of course, the greater the
stationary probability (ranking score), the higher the rank of
an author or a document.

The coupling is parameterized by four parameters,m, n,
k andλ. Ordinary PageRank score is sometimes viewed
as the probability that arandom surferwill be on this web
page at some moment in the distant future. Similarly, we
present the combined random walk in terms of a random
surfer (RS) who is capable of browsing over documents and
their authors as well.

If at any given moment RS finds himself on the author
side, the current vertexv ∈ VA, then he can either make
anIntra-class step(one step of the random walk parameter-
ized byÃ) or an Inter-class step— one step of the Inter-
class random walk. Similarly, if RS finds himself on the
document side, the current vertexv ∈ VD, then one op-
tion is to make anIntra-class step(one step of the random
walk parameterized bỹD) while another option is to make
one step of the Inter-class random walk. In general, one
Intra-class step changes the probability distribution from
(a,0) to (Ãa,0) or from(0,d) to (0, D̃d), while one Inter-
class step changes the probability distribution from(a,d) to
(DAT d, ADTa).

Now, the combined random walk is defined as follows:

1. If the current state of RS is some author,v ∈ VA, then
with probabilityλ take2k + 1 Inter-class steps, while
with probability1− λ takem Intra-class steps onGA.

2. If the current state of RS is some document,v ∈ VD,
then with probabilityλ take2k + 1 Inter-class steps,
while with probability1−λ taken Intra-class steps on
GD.

It is convenient to write a subroutineBiWalk (Algo. 1)
that takesx, the probability distribution on one side of a bi-
partite graph and returns the distribution on the other side
after taking2k + 1 Inter-class steps.U is the transition ma-
trix from the current side to the other andV is the transition
matrix from the other side back to the current side.

Algorithm 1 Random walk on a Bipartite Graph

procedureBiWalk(U, V,x, k)

1: c← x
2: for i = 1 to k do
3: b← UT c
4: c← V T b
5: end for
6: b← UT c
7: returnb

Now, everything is ready to realize co-ranking in the fol-
lowing procedure,CoupleWalk(Algo. 2). It should be noted
that the very recent work [11] of learning on subgraphs can
be considered an implicit special version of our algorithm
with infinite k andm = n = 1.

4. Convergence Analysis
We need to ensure that Algo. 2 converges. Fortunately,

it is no more than an iterative computation of the stationary
probabilities of a Markov chain that is the combined ran-
dom walk. To see this, observe thatBiWalk(U, V,x, k) =
UT (V T UT )kx. Therefore, lines 6 and 7 in Algo. 2 can be
rewritten as:



Algorithm 2 Coupling random walks for co-ranking

procedureCoupleWalk(Ã, D̃, AD, DA, m, n, k, λ, ε)

1: a← 1

nA
1

2: d← 1

nD
1

3: repeat
4: a′ ← a
5: d′ ← d
6: a← (1−λ)(ÃT )ma′ + λBiWalk(DA, AD,d′, k)

7: d← (1− λ)(D̃T )nd′ + λBiWalk(AD, DA,a′, k)
8: until |a− a′| ≤ ε
9: returna, d

at+1 = (1− λ)(ÃT )mat + λDAT (ADT DAT )kdt (6)

dt+1 = (1− λ)(D̃T )ndt + λADT (DAT ADT )kat (7)

whereat anddt are the ranking vectors for authors and doc-
uments from the previous iteration;m, n are prescribed pa-
rameters. Now we concatenatea andd into a vectorv such
thatv = [aT ,dT ]T . In particular,vt = [(at)T , (dt)T ]T , is
composed ofa andd as in Algo. 2 aftert iterations. Con-
struct a matrixM , where

M =

[
(1 − λ)(ÃT )m λDAT (ADT DAT )k

λADT (DAT ADT )k (1− λ)(D̃T )n

]
.

(8)
Clearly,vt+1 = Mvt, andM is a stochastic matrix that

parameterizes the combined random walk. It is also easy
to see that for0 < α, λ < 1, this Markov Chain is er-
godic. Thus, the stationary probabilities can be found as
limn→+∞ Mnv, for any initial vectorv. In particular,a
andd in Algo. 2 will converge to the ranking scores as we
defined them. In practice, the convergence can be estab-
lished numerically.

5. Random Walks in a Scientific Repository
This section sets up the co-ranking framework to be ap-

plied to co-ranking scientists and their publications. It in-
cludes defining three networks and the three corresponding
random walks, parameterized by four stochastic matrices:
A (giving rise toÃ), D (giving rise toD̃), AD andDA.

5.1 GD: document citation network, and
D: the Intra-class random walk on GD

The citation document networkGD is defined as follows:
there is a directed edge fromdi to dj , if documentdi cites
documentdj at least once. The graph is not weighted; we
ignore repeated citations from the same document to the
same document. Self-citations are technically allowed, but,
presumably, there are none.

The design ofD is straightforward. Namely, the Intra-
class random walk onGD is just a simple random walk on
it. The transition probability

P (j|i) = Di,j =
nD

i,j

nD
i

, (9)

wherenD
i,j is the indicator of whether documenti citesj;

nD
i is the total number of citations documenti makes. If a

document does not cite anything (which effectively means
that the citations of this documents are not in the corpus),
let the transition probabilities from this document be1

nD
.

5.2 GA: author social network, and A: the
Intra-class random walk on GA

Rather than takingGA to be the social network, where
two authors are connected by an edge, if they collaborated
on a paper, we come up with a more general definition. This
definition employs the notion of asocial event. A social
event could be any kind of activity, involving a group of au-
thors. A co-occurrence of two authors in a social event is
supposed to create or strengthen their social ties. In partic-
ular, we view collaborating on a paper or co-participating
in a conference as such ”co-occurrences”. Let the set of
social events beE = {ei}, where an eventei is identified
with the set of participating authors. We constructGA as an
unweighted graph, where two authors are connected by an
edge if they co-occur in some social evente ∈ E .

Intuitively, a paper of fewer authors infers stronger so-
cial ties among them on average (cf. [15]). To take this into
account, we first make the graphGA weighted. Define the
social tie functionτ(i, j, ek) : A × A × E → [0, 1] rep-
resenting the strength of a social tie between actorai and
actoraj resulting from their co-occurrence in the eventek.
The strength of the social tie depends on the size of the cor-
responding social event. If there are only two people taking
part in an event (say, collaborating on a paper), we say that
it infers aunit social tie. Otherwise, the tie is somehow nor-
malized by the size of the event. There are many ways to do
that, we arbitrarily chose one that seemed promising to us:

τ(i, j, ek) =
I(i, j ∈ ek)

|ek|(|ek|+ 1)/2
(10)

whereI(i, j ∈ ek) is the indicator function of whether au-
thorsi andj co-occur in the eventek (that is, if ai ∈ ek

andaj ∈ ek; it can be thatai = aj). |ek| ≥ 2 is the num-
ber of authors involved in eventek. For |ek| = 1, only a
self social tie of that author is inferred. Adding up social
ties inferred from all events, we obtain a cumulative matrix
T = (Ti,j) ∈ R

nA×nA , by definition:

Ti,j =
∑

ek∈E

τ(i, j, ek) (11)



whereE is the set of social events. NowGA can be viewed
as a weighted graph, with the weight on the edge connecting
ai andaj beingTi,j .

In this paper, we consider two kinds of social events. The
first kind is a collaboration on a paper (even if the paper has
a single author), in this case the ’event’ includes exactly all
the authors of this paper. The second kind is the appearance
of names in conference proceeding lists. Each conference
instance (i.e.ACM SIGMOD ‘01) is a separate event, con-
sisting of the authors who took part in it. We treat the two
kinds equally, and we find it appropriate because of the nor-
malization (10).

We proceed to define the Intra-class random walk onGA

in a natural way, namely, the next step is chosen accord-
ing to the weights on the edges. Technically, it amounts to
normalizingT by rows. The transition probabilities from
authorai to authoraj (i.e. of the authoraj givenai) can
then be found as:

P (j|i) = Ai,j =
Ti,j∑
j Ti,j

. (12)

HereT is symmetric due to the design ofτ . A is not
necessarily symmetric because row sums can be different.
Ã is defined accordingly.

5.3 GAD: the bipartite authorship net-
work, and AD, DA: the Inter-class ran-
dom walk on GAD

The bipartite authorship graphGAD is defined in the nat-
ural way. Namely, the entries in its adjacency matrixEAD

are the values of the indicator function of a document being
written by an author, i.e.

EAD(i, j) = I(dj is authored byai). (13)

Using the adjacency matrixEAD, we define a weight
matrixWAD = (w(i, j)) as follows:

w(i, j) =
EAD(i, j)

nA
j

, (14)

wherenA
j is the number of authors of the documentdj .

Then we proceed to defineAD andDA, containing the
conditional transition probabilities of a random surfer mov-
ing from authori to documentj and vice versa, respectively,
given that the next step is taken in the bipartite graphGAD.
That is, let

P (dj |ai) = ADi,j =
w(i, j)∑
k w(i, k)

, (15)

P (ai|dj) = DAj,i =
w(i, j)∑
k w(k, i)

. (16)

This completes the descriptions of networks and random
walks 2. Note that (14) implies

∑
k w(k, j) = 1. The de-

sign of the matricesAD andDA is asymmetric to reflect the
asymmetric relationship between authors and documents.
Indeed, it is better for an author to create many good docu-
ments; for a document it is better to have better authors, but
not necessarilymoreauthors.

6 Experiments

6.1 Data Preparation

For experiments, we use data from CiteSeer [9], a pop-
ular search engine and digital library which currently has
a collection of over 739,135 scientific documents in Com-
puter Sciences. The documents have 418,809 distinct au-
thors after name disambiguation. Since the data in CiteSeer
are collected automatically by crawling the Web, we may
not have enough information about certain authors. Accord-
ingly, we concentrate on the subset of those authors who
have at least five co-authored publications in the database.
We also keep all documents that have at least one author
from this selected subset. Presumably, this gives us a more
informative sample including7, 488 authors and182, 662
documents from1991 to 2004. In order to extract the infor-
mation about conference proceedings, we perform a fuzzy
matching of the titles of CiteSeer documents with the ti-
tles of documents listed by conferences in the manually pre-
pared data from DBLP.

While performing the ranking on the full data collection
is technically feasible, the bias in collection sizes towards
certain domains can undermine the fairness of ranking sci-
entists from different areas. Therefore, we start from cat-
egorizing the documents into domains. In particular, we
apply the Latent Dirichlet Allocation (LDA) model [2] with
the desired number of topics set toT = 50. We selected
five topics that are well-represented in the database: T6:
stochastic and Markov processes, T8: WWW and informa-
tion retrieval, T19: learning and classification, T36: statis-
tical learning, and T48: data management. All experiments
were carried out for each of these five topics.

6.2 Author Subset Generation

For a given topic (out of five listed above), LDA pro-
duces the ’topic weight’ for each document. The sum of the
topic weights over all documents of an author is the ’accu-
mulated topic weight’ for that author; very crudely, this is
just the number of papers classified as belonging to a given
topic.

We apply a two-step heuristic that further reduces the

2It should be noted that in this constructionGAD andGA are strongly
correlated, sinceGAD intrinsically includes the information about co-
authorship. Also, the co-occurrence in conference proceeding lists is cor-
related with co-authorship. We did not observe any difficulties from that.



cs-id title authors year cite
116523 The Well-Founded Semantics for General Logic Programs Allen Van Gelder, Kenneth A. Ross, John S. Schlipf 1991 312
25887 Mining Association Rules between Sets of Items in Large Databases Rakesh Agrawal, Tomasz Imielinski, Arun Swami 1993 921
35061 Answering Queries Using Views Alon Levy, Alberto Mendelzon, Yehoshua Sagiv, et.al. 1995 296
440364 Competitive Paging Algorithms Amos Fiat, Richard M. Karp, Michael Luby, et.al. 1991 147
70633 Efficient Similarity Search In Sequence Databases Rakesh Agrawal, Christos Faloutsos, Arun Swami 1993 205
229795 On The Power Of Languages For The Manipulation Of Complex Objects Serge Abiteboul, Catriel Beeri 1993 129
24123 Implementing Data Cubes Efficiently Venky Harinarayan, Anand Rajaraman, Jeffrey Ullman1996 248
6606 The Design Of Postgres Michael Stonebraker, Lawrence Rowe 1986 152

142235 Objects and Views Serge Abiteboul, Anthony Bonner 1991 196
118598 Database Mining: A Performance Perspective Rakesh Agrawal, Tomasz Imielinski, Arun Swami 1993 100
16843 An Interval Classifier for Database Mining Applications Rakesh Agrawal, Sakti Ghosh, Tomasz Imielinski, et.al.1992 95
88311 Querying Semi-Structured Data Serge Abiteboul 1997 373
84227 Object Exchange Across Heterogeneous Information Sources Yannis P., Hector Garcia-Molina, Jennifer Widom 1995 316
65646 Mediators in the Architecture of Future Information Systems Gio Wiederhold 1992 460
9685 The Object-Oriented Database System Manifesto M. Atkinson, Francois Bancilhon, David DeWitt, et.al. 1989 298

Table 1. Top documents in the topic data management
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Figure 3. Density of author collabora-
tion/citation networks vs. the number of
top authors according to LDA accumulated
weights, on the topic data management.

problem scale. Once the topic is fixed, we sort all authors by
their accumulated topic weights. Then we choose a subset
of top authors and all their documents, and re-rank them.
This is similar to the approach used by search engines: take
a subset of pages with large in-degrees and rank them by
PageRank.

To see, how much information will be compromised
when the problem is reduced in scale, we perform a sim-
ple statistical analysis of the graph densities (defined as
|E|/|V |2) of on author subsets with different sizes. Fig. 3(a)
and Fig. 3(b) present the graph densities of social and cita-
tion networks for the subsets of top authors with respect
to LDA accumulated topic weights, on the topic 48,data
management. In the following experiments, for each topic
we work with 500 authors with the highest topic weights.
Once the author subset is generated, we work only on the
documents by these authors.

6.3 Author Rankings

To evaluate the co-ranking approach, we perform a rank-
ing of authors in each topict by the methods listed below:

• Publication count, the number of papers (on the topic
t) an author has in the document subset;

• Topic weight, the sum of topic weights of all docu-
ments, produced or co-authored by an author;

• Number of citations, the total number of citations to
the documents of an author from the other documents
on the same topic;

• PageRank in the social network, ranking by PageR-
ank on the graphGA, constructed as outlined in§ 5;

• Co-Ranking, co-ranking authors and documents by
the new method.

The parameter values we used in the Co-Ranking frame-
work arem = 2, n = 2, k = 1, λ = 0.2, α = 0.1. For
different settings ofm, n, k the top20 authors and papers
varied slightly, even less for differentα.

We used a well-known metric, the Discounted Cumu-
lated Gain (DCG) [12], in order to compare the five dif-
ferent rankings of authors. Top20 authors according to
each ranking (publication count, etc.) are merged in a sin-
gle list, shuffled and submitted for judgment. Two human
judges, one an author of this paper and the other one from
outside, provide feedback. Numerical assessment scores of
0, 1, 2, and3 are collected to reflect the judges’ opinion with
regard to whether an author is ranked top 20 in a certain
field, which respectively meansstrongly disagree, disagree,
agree, andstrongly agree, with the fact that these authors
are ranked top20 in the corresponding field. As suggested,
assessments were carried out based on professional achieve-
ment of the authors such as winning of prestigious awards,
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Figure 4. DCG 20 scores for author rankings:
number of papers, topic weights, number of
citations, PageRank, and Co-Ranking.

being a fellowship of ACM/IEEE, etc. The judges’ assess-
ment scores are averaged. We observe a high agreement
between the two judges.

The DCG20 scores obtained are presented in Fig. 4. The
figure shows five groups of bars corresponding to five top-
ics. This evaluation shows that the new co-ranking method
outperforms the other four ranking methods, achieving an
average improvement of27.8%, 19.1%, 10.6%, and7.7%
over rankings by the number of papers, the topic weights,
the number of citations, and the PageRank.

We list the top15 authors ordered by the Co-Ranking
scores on the topicsdata managementand learning and
classificationsin Table 2 and Table 3. Along with both ta-
bles, the ranks based on simple metrics are also presented.
Note that in the top author lists, we observe a mix of famous
scientists from different fields. This is due to the imperfect
automatic categorization performed by LDA; manual cate-
gorization labels can be used instead.

6.4 Document Rankings

For each topic, we obtained the Co-Ranking scores for
the documents. For comparison, we also found the num-
ber of citations to each document within the same docu-
ment subset. Table 1 and Table 4 present the top docu-
ments according to Co-Ranking in the topicsdata man-
agementand learning and classification. For each docu-
ment, we show the title, the first three authors (because of
space constraints), the year of publication, and the num-
ber of citations. To get more information, follow the URL
“http://citeseer.ist.psu.edu/x” wherex are the cs-id.

The quality of ranking documents is hard to quantify,
there are few objective criteria to rely on, and also domain-
specific knowledge is required for an assessment. We did

r author names con# r p# r cite# r
1 Rakesh Agrawal 171 44 129 32 1915 1
2 Serge Abiteboul 209 12 115 42 1300 3
3 Jennifer Widom 234 5 113 44 1617 2
4 Jiawei Han 271 2 142 22 720 10
5 Hector Garcia-Molina 232 7 169 16 1247 4
6 Ian Foster 142 79 215 12 513 19
7 Azer Bestavro 97 198 174 14 354 42
8 Deborah Estrin 134 100 186 13 471 23
9 Subbarao Kambhampati 118 130 275 8 173 132
10 Michael Stonebraker 59 322 144 21 299 66
11 Christos Faloutsos 218 11 98 58 770 9
12 Moshe Y. Vardi 184 29 148 20 415 30
13 Rajeev Motwani 145 75 127 33 579 15
14 Richard T. Snodgrass 125 115 68 131 330 50
15 Joseph Hellerstein 63 305 75 103 132 208

Table 2. Top authors in the topic data manage-
mentwhen m = 2, n = 2, k = 1. con# is the
number of neighbors in the social network;
p# is the number of papers; cite# is the num-
ber of citations; r denotes the ranks by the
corresponding methods.

r author names con# r p# r cite# r
1 Sebastian Thrun 178 6 293 8 782 4
2 Bernd Girod 72 180 217 10 313 33
3 Jurgen Schmidhuber 152 21 160 14 446 18
4 Stephen Muggleton 99 88 45 200 492 11
5 Robert E. Schapire 133 35 67 105 1093 1
6 Avrim Blum 102 82 295 7 239 58
7 Trevor Hastie 68 199 88 52 263 53
8 Rakesh Agrawal 68 197 129 22 843 2
9 Manuela Veloso 155 18 196 11 491 12
10 Thomas G. Dietterich 74 173 53 159 514 8
11 Alex Pentland 126 47 110 36 369 21
12 Michael I. Jordan 172 9 91 50 566 7
13 David J.C. MacKay 22 379 73 91 349 25
14 David Haussler 113 61 65 112 351 24
15 David Heckerman 77 163 56 150 491 14

Table 3. Top authors in the topic learning and
classificationswhen m = 2, n = 2, k = 1. con#
is the number of neighbors in the social net-
work; p# is the number of papers; cite# is the
number of citations; r denotes the ranks by
the corresponding methods.



200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

Number of authors

N
or

m
al

iz
ed

 s
ca

le
Number of authors
Number of documents
CPU Runtime

Figure 5. Average CPU runtime and number
of documents w.r.t. the number of authors
for five topics, where m = 2, n = 2, k = 1. Ap-
propriate units have been chosen, so that a
single normalized scale can be used. Every-
thing is averaged over five topics.

not produce any judgment on the document rankings we
obtained due to the above concerns. In general, one can ob-
serve from Table 1 and Table 4 that top documents typically
have many citations.

6.5 Parameter Effect

We ran Co-Ranking on50 synthetic datasets with various
settings ofm, n, k, λ, andα and arrived at the following
conclusions: (1) Largeλ introduces more mutual depen-
dence of the rankings between authors and documents. In
particular, asλ increases, the ranking of authors becomes
closer to the ranking by the number of publications; (2) In
case of largeα such as0.5, the ranking of authors becomes
more uniform, so that the documents of productive authors
are neglected, and also generally benefiting the documents
with many authors. Since both effects are undesirable, keep
α small; (3) For smallm, especiallym = 1, the weight of
edges inGA is not fully taken into account, but only the
local differences in weights matter; (4) Prevent largek. It
completely eliminates the effect of authors on documents
and vice versa, except for the authorship information: the
bipartite random walk forgets everything, as expected from
a Markov chain after many steps; (5) For smalln, the struc-
ture of the citation network is less important, making the
Co-Ranking more like a citation counting.

6.6 Convergence and Runtime

Finally, we present some observations about the compu-
tational complexity: We observed that the algorithm con-
verges faster for largerα. This is expected because a
Markov chain takes a shorter time to reach the stationary
status if the transition matrix is closer to uniform.
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Figure 6. Effect of m-n on convergence.

We fix k = 1, λ = 0.2, α = 0.1 and varym andn.
Fig. 6(a) and Fig. 6(b) show the effect ofm andn on the
number of iterations before convergence and the runtime of
the program. It can be seen that for large and increasing
m andn the number of iterations decreases slowly. This is
because the Intra-class random walks have enough steps to
become nearly stationary before the next Inter-class step.

The computational complexity of Algo. 1 isO(k×nA×
nD). The complexity of Algo. 2 isO(t×nA×nD×(n+m+
2k + 1)), wheren, m, k are parameters andt is the number
of steps before convergence. Fig. 5 shows the average CPU
runtime w.r.t. to the number of authors. The Co-Ranking
was implemented in Python and tested on Intel CoreDuo
1.66 GHz, 1G RAM, Windows O.S.

7. Conclusions and Future Research

This paper proposes a new link analysis ranking ap-
proach for co-ranking authors and documents respectively
in their social and citation networks. Starting from the
PageRank paradigm as applied to both networks, the new
method is based on coupling two random walks into a
combined one, presumably exploiting the mutually rein-
forcing relationship between documents and their authors:
good documents are written by reputable authors and vice
versa. Experiments on a real world data set suggest that
Co-Ranking is more satisfactory than counting the number
publications or the total number of citations a given scientist
has received. Also, it appears competitive with the PageR-



cs-id title authors year cite
364205 Learning Bayesian Networks: The Combination

of Knowledge and Statistical Data David Heckerman, Dan Geiger, David Chickering1994 351
142690 Bounds on the Sample Complexity of Bayesian Learning Using

Information Theory and the VC Dimension David Haussler, Michael Kearns, Robert Schapire1992 85
124084 Efficient Distribution-free Learning of Probabilistic Concepts Michael J. Kearns, Robert E. Schapire 1993 115
25286 Bagging Predictors Leo Breiman 1996 657
384587 Reinforcement Learning: Introduction Richard Sutton 1998 614
48796 An Information-Maximization Approach to Blind

Separation and Blind Deconvolution Anthony J. Bell, Terrence J. Sejnowski 1995 491
41366 Stacked Generalization David H. Wolpert 1992 367
527057 Optimization by Simulated Annealing S. Kirkpatrick 1993 1527
25887 Mining Association Rules between Sets of Items in Large Databases Rakesh Agrawal, Tomasz Imielinski, Arun Swami1993 921
20336 Generalized Additive Models Trevor Hastie, Robert Tibshirani 1995 450
123646 Experiments with a New Boosting Algorithm Yoav Freund, Robert E. Schapire 1996 500
528249 Hierarchical Mixtures of Experts and the EM Algorithm Michael I. Jordanand Robert A. Jacobs 1993 472
543817 The Strength of Weak Learnability Robert E. Schapire 1990 273
63435 Systematic Nonlinear Planning David McAllester and David Rosenblitt 1991 226
434739 Bayesian Interpolation David J.C. MacKay 1991 244

Table 4. Top documents in the topic learning and classification

ank algorithm as applied to the social network only. We did
not evaluate the ranking of documents due to the lack of any
objective criteria.

Possible directions of future research include: (1) A
larger empirical evaluation could be carried out to com-
pare the Co-Ranking framework with other methods and
find out, on which inputs it performs unsatisfactorily; (2)
A formal analysis of the properties of the new Co-Ranking
framework is required, including the effect of parameters
m, n, k, λ on the ranking results, speed of convergence, sta-
bility, etc. It is also interesting to try to bring it into cor-
respondence with the existing general frameworks for link
based rankings (see e.g. [4]). We expect there to be interest-
ing interconnections with the HITS algorithm and its vari-
ations, if authors are viewed as authorities and documents
are viewed as hubs; (3) Other ways shall be explored for
coupling random walks other than the one suggested in this
paper. Several possibilities have been deemed unsatisfac-
tory, however, presumably, the(m, n, k, λ) - setting does
not exhaust all meaningful ways to do that. Studying the
effect of introducing differentλAD 6= λAD may serve as a
starting point; (4) Presumably, the framework can be gen-
eralized for co-ranking entities of several types. Even for
the case of two types, its applications are not limited to co-
ranking authors and documents either.
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